Decrease in mitochondrial complex I activity in ischemic/reperfused rat heart: involvement of reactive oxygen species and cardiolipin.
نویسندگان
چکیده
Reactive oxygen species (ROS) are considered an important factor in ischemia/reperfusion injury to cardiac myocytes. Mitochondrial respiration is an important source of ROS production and hence a potential contributor to cardiac reperfusion injury. In this study, we have examined the effect of ischemia and ischemia followed by reperfusion of rat hearts on various parameters related to mitochondrial function, such as complex I activity, oxygen consumption, ROS production, and cardiolipin content. The activity of complex I was reduced by 25% and 48% in mitochondria isolated from ischemic and reperfused rat heart, respectively, compared with the controls. These changes in complex I activity were associated with parallel changes in state 3 respiration. The capacity of mitochondria to produce H2O2 increased on reperfusion. The mitochondrial content of cardiolipin, which is required for optimal activity of complex I, decreased by 28% and 50% as function of ischemia and reperfusion, respectively. The lower complex I activity in mitochondria from reperfused rat heart could be completely restored to the level of normal heart by exogenous added cardiolipin. This effect of cardiolipin could not be replaced by other phospholipids nor by peroxidized cardiolipin. It is proposed that the defect in complex I activity in ischemic/reperfused rat heart could be ascribed to a ROS-induced cardiolipin damage. These findings may provide an explanation for some of the factors responsible for myocardial reperfusion injury.
منابع مشابه
Identification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation
The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...
متن کاملIdentification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation
The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...
متن کاملEffect of pre-treatment with oxytocin on cardiac enzymes in regional ischemiareperfusion injury induced in the rat heart
Introduction: Cardiac preconditioning represents the most potent and consistently reproducible method of rescuing heart tissue from undergoing irreversible ischemic damage. The aim of the present study was to evaluate oxytocin (OT) induced cardioprotection and its signaling pathways on lactate dehydrogenase (LDH) and creatine kinase-MB isoenzyme (CK-MB) in the anesthetized rats. Methods: Ei...
متن کاملThe effect of 6-deoxyclitoriacetal from Clitoria macrophylla Wall. on rat liver mitochondrial respiration and ATPase activity
A Thai plant Clitoria macrophylla Wall. was claimed to possess some pharmacological activities. The phytochemical studies reported a rotenoid compound, 6-deoxyclitoriacetal, which exhibits the cytotoxic effect in several cell line experiments. This report was to study the effect of 6-deoxyclitoriacetal on rat liver mitochondria, which may associated to its cytotoxic phenomena. Mitochondrial sus...
متن کاملPreconditioning effects of oxytocin in reducing cardiac arrhythmias in a rat heart regional ischemia-reperfusion model
Abstract Introduction: Occurrence of cardiac arrhythmias and myocardial infarction are two main deleterious events that are caused by ischemia-reperfusion (IR) injury in the heart. Cardiac preconditioning represents the most potent method of rescuing heart tissue from undergoing irreversible ischemic damage. The aim of the present study was to evaluate oxytocin (OT) cardioprotective effect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 94 1 شماره
صفحات -
تاریخ انتشار 2004